

Negative energy balance = Energy deficit

State reached by the cow when the **energy provided by its feed** does not cover **its energy requirements**.

ENERGY DEFICIT IN DAIRY COWS

© Idele

Negative impact on dairy farm's profitability when the deficit is severe or long-lasting

Reduced milk production

Impaired health

Reproductive problems

Survey of 67 dairy farmers

➤ Half of the farmers have observed cows in energy deficit

➤ Prevention and technical support help avoid severe deficits

Pénasse et al., 2019

DETECTION OF ENERGY-DEFICIENT COWS

Observation of body condition score: used by farmers but too late

Blood tests (non esterified fatty acids, β-hydroxybutyrate...): accurate but invasive

©N. Gaudillière

Milk analysis: easy-to-access but no specific indicator of energy deficit

→ No individual and effective detection of energy-deficient cows

BIOMARO'LAIT: A PROJECT TO IDENTIFY NEW BIOMARKERS OF ENERGY DEFICIENCY IN MILK

Negative energy balance affects metabolism and health

Leduc et al., 2021

Journal of Animal Science, 2021, Vol. 99, No. 7, 1-12

Which milk components are affected by an energy deficit and could be interesting biomarkers?

Can we use these biomarkers to detect energy-deficient cows in routine?

Milk appears to be a source of potential energy-deficiency biomarkers

METHODOLOGICAL APPROACH

- 1. Identification of molecules affected by feed restriction in milk
- √ Trials on INRAE experimental farms

✓ Exploratory research on numerous milk components (milk metabolites, fatty acids, proteins and microRNAs...)

2. Selection of biomarkers of energy deficit

3. Prediction of biomarkers using mid-infrared spectrometry

- ✓ Based on data collected during trials
- **✓** Exploration of potential applications

EXPERIMENTAL PROTOCOLS

3 feed restriction trials to identify milk components potentially biomarkers of energy deficit

Short & Intense (SI)

W-1 W1 W+1 Day: -313

n = 8 ~165 days in milk

6-day restriction -64 % DMI

INRAE UMR H UE Herbipôle of Marcenat Billa et al., 2020

Long & Moderate (LM)

n = 10 restricted + 9 control ~77 days in milk

29-day restriction -20 % DMI

INRAE UMR PEGASE IEPL of Méjusseaume Hervé et al., 2019

Deffilait

n = 30

INRAE UMR PEGASE IEPL of Méjusseaume Leduc et al., 2022

IDENTIFICATION OF BIOMARKERS OF INTEREST

- Trial-by-trial and component-by-component descriptive analysis
- 2. Integrative kinetic and multi-omics analysis

Identification of a panel of biomarkers including:

- milk macro-components,
- Proteins
- microRNAs
- metabolites, including milk glutamate concentration

GLUTAMATE IN MILK

A potential biomarker of energy deficit

- ✓ Rapid decrease during feed restriction, then return to basal levels on ad libitum refeeding
- ✓ Positive correlation with energy balance (0.59)
- ✓ Effect of intensity of restriction on adaptive response
- ✓ No variation during an energy deficit at the start of lactation

Leduc et al., 2022

Short & Intense Trial

restriction

577 MILK SAMPLES

	n data	n cows	lactation number	days in milk
Short & Intense trial	514	10 Montbeliarde + 8 Holstein cows	2 to 7	114 to 215 days
DEFFILAIT trial	63	26 Holstein cows	1 to 6	22 to 205 days

Enzymaticfluorometric analysis of glutamate (Larsen and Fernández, 2017)

Extraction & standardisation of MIR spectra (Grelet et al., 2015)

Random constitution of 2 datasets

- Training set: 70 % of the data
 - > N = 406
 - ➤ Used to calibrate the PLS regression equation
- Testing set: 30 % of the data
 - > N = 171
 - ➤ Used to validate the performances of equation

Equation performances

Method	Dataset	N	MEAN	SD	MEAN PRED	SD PRED	SD RESID	R2	RPD
SPLS	TRAIN	406	338.7	177.6	340.6	152.2	82.7	0.78	2.15
SPLS	TEST	171	346.0	138.9	348.2	123.4	82.5	0.65	1.68

➤ No similar equation in the literature

Interesting prospects for detecting cows with an energy deficit due to feed restriction

TAKE HOME MESSAGES

Predicting glutamate concentration in milk, a promising way of detecting energy-deficient cows

- ✓ Milk glutamate appears to be an interesting biomarker of energy deficit in dairy cows that is caused by dietary restriction
- ✓ It is possible to predict glutamate in milk using MIR spectrometry
- √This indicator could be used as a panel with other MIR-based indicators (BHB, acetone, C18:1*c*9, citrate, lactose, etc.) to provide more accurate information.

